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Abstract. The time-dependent transport through an ultrasmall quantum dot coupling to two electron reser-
voirs is investigated. The quantum dot is perturbed by a quantum microwave field (QMF) through gate.
The tunneling current formulae are obtained by taking expectation values over coherent state (CS), and
SU(1,1) CS. We derive the transport formulae at low temperature by employing the nonequilibrium Green
function technique. The currents exhibit coherent behaviors which are strongly associated with the applied
QMF. The time-dependent currents appear compound effects of resonant tunneling and time-oscillating
evolution. The time-averaged current and differential conductance are calculated, which manifest photon-
assisted behaviors. Numerical calculations reveal the similar properties as those in classical microwave field
(CMF) perturbed system for the situations concerning CS and squeezed vacuum SU(1,1) CS. But for other
squeezed SU(1,1) CS, the tunneling behavior is quite different from the system perturbed by a single CMF
through gate. Due to the quantum signal perturbation, the measurable quantities fluctuate fiercely.

PACS. 73.40.-c Electronic transport in interface structures – 73.20.Dx Electron states in low-dimensional
structures (superlattices, quantum well structures and multilayers) – 72.10.Bg General formulation of
transport theory

1 Introduction

The investigation on transport through mesoscopic sys-
tems develops very rapidly in the past few years both
in theoretical and experimental aspects [1-8]. The rea-
son why this prosperous field attracts so much attention
is that it has potential applications in electronic indus-
try. The quantum devices are composed of small sample
whose dimensions are comparable with or much smaller
than the coherence lengths of electron. These devices pos-
sess different microstructures which can be described by
two-dimensional electron gas confined in small samples. In
another dimension electrons can tunnel through the device
from source to drain, and they are controlled by appropri-
ate gate voltages. Electrons transport through such small
devices exhibit interesting phenomena due to phase coher-
ence and confinement. The Coulomb interaction is impor-
tant, and the single-particle spectrum is discrete in these
systems. The Coulomb interaction and the geometry of a
device may cause the phenomenon known as the Coulomb
blockade [9,10]. Quantum dots are the models to describe
these small quantum devices which are characterized by
small capacitances to the substrate and to the leads.

In the past years, transports through quantum de-
vices with dc voltages applying to them are investigated
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intensively, and many properties have been understood
now. Recently, the time-dependent transport through
small quantum devices attracted much interest, and it
becomes a very active research frontier. In fact, high-
frequency signals may be applied to the quantum devices,
and information of applied fields will be transferred to
the tunneling currents. Some novel phenomena, such as
photon-assisted tunneling [11-18], photon-electron pump
effect [19,20], have been observed. During the transport,
electrons absorb or emit photons to split the single elec-
tron spectrum. The transport shows resonant peaks in-
duced by the sideband around the main resonant peak. If
an electron absorbs enough energy from photons, it can
overcome thresholds and then transport to the other lead.
Comparing with the dc transport, the time-dependent
transport is still in its immature stage. The theoretical
investigation on time-dependent tunneling can be traced
back to the work performed by Tien and Gordon [21].
They studied the single electron tunneling through super-
conductor films with classical microwave fields (CMFs).
They explained the two phenomena: the excess of tun-
neling current, and the current appearing voltage steps.
As a CMF is applied, electric field E(r, t) and vector
potential A(r, t) may affect the motions of electrons in
the sample. The fields are location-dependent in general.
However, if the system is very small, and the wavelength
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of the field is large enough, we can approximate the varia-
tion of the field to consider it as space-independent one. In
the dipole approximation and by neglecting the effect of
all other fields, the electric field sets up a potential differ-
ence V0 cos(ωt) between two films. With CMFs applying to
the system, an electron tunneling through a quantum de-
vice may exchange energy with the external fields, so that
its phase will be modified. The external time-dependent
perturbation affects the phase coherence differently in dif-
ferent parts of the system [22]. In the classical region
(~ω � kBT ), the quantum effect is not obvious, while
in the quantum region (~ω � kBT ) the tunneling current
shows obvious effect of photon absorption and emission.
Theoretically, the quantum devices are so small that their
sizes L lie in the phase coherence regime L ≤ Lφ, where Lφ
is the coherence length. Quantum mechanical rules govern
the movement of electrons. As microwave fields apply to
the mesoscopic systems, new quantum effect may be in-
duced if we deal with the problems in fully quantum point
of view by considering the microwave fields as non-classical
versions. To exploit the full quantum mechanical nature of
mesoscopic Josephson junctions, Vourdas has proposed a
theory to describe the interaction between the device and
the quantum fields, and some new properties were found
by Kuang et al. [23].

In this paper, we study the system composed of a quan-
tum dot coupling to two electron reservoirs with a quan-
tum microwave field (QMF) applying to the central dot
through its gate. We study transport behaviors induced
by the field as photon energy is much larger than thermal
noise energy. In this system the current formula corre-
sponding to the usual one becomes an operator, and the
expectation value (EV) of current operator in a definite
state of QMF is the observable quantity. For special cases,
we consider coherent state (CS) and SU(1,1) CS to find
EV of current. For simplicity, we deal with an ultrasmall
quantum dot with single electron level. The dot is weakly
coupled to source and drain reservoirs by tunneling junc-
tions. This paper is organized as follows. Section 2 con-
tains model description and transport formulae derivation.
Sections 3 and 4 are devoted to the special cases for CS
and SU(1,1) CS, respectively. We arrange some concluding
remarks in Section 5.

2 Model and current formula

We investigate the system with quantum monochromatic
field applying to the dot through its gate. Similar to the
classical situation, QMF is location-dependent in general.
For our system, the ultrasmall quantum dot is smaller
than the order 10−6 m, while the wavelength of the QMF
is larger than 10−4 m. So that r · k � 1, and the QMF
can be approximated as the space-invariant one, i.e.,

E(t) = iE0(ce−iωt − c†eiωt). (1)

The Hamiltonian of the electromagnetic field in the mono-
chromatic case is the harmonic oscillator Hamiltonian:

Hc = ~ω(c†c+ 1
2 ), where c† and c are the creation and an-

nihilation operators of photon; ω is the angular frequency
of the field. Because the velocity of an electron v in the
quantum dot is much smaller than the speed of light C,
i.e., v � C, the magnetic force is much smaller than the
electric force. This can be seen by comparing with the two
forces

| eCv×B |

|eE |
∼

v

C
� 1.

Thus, we neglect the effect of magnetic field, and merely
consider the effect of electric field. This is associated with
the dipole approximation. There is an upper limit of fre-
quency in order to employ the nonequilibrium Green func-
tion technique. This upper limit can be up to tens of THz.
As the frequencies of the external fields is smaller than this
limit, we can use the adiabatic approximation to deal with
the problems. For this circumstance, the external quan-
tum field does not change the electronic distribution di-
rectly [22,24]. The effect of the quantum electric field is
adding a dipole potential to the Hamiltonian of the sys-
tem. To obtain self-consistent transport behaviors from
this ac perturbed system one should consider induced po-
tential by solving Helmhotz equation [25]. However, since
we are mainly interested in the quantum effect caused by
the QMF, and the induced potential is small comparing
with the applied potential, we neglect the internal poten-
tial for simplicity [26]. Therefore, the Hamiltonian of the
system is given by

H =
∑

α∈{L,R}

∑
kσ

Eαkσa
†
α,kσaα,kσ +

∑
σ

[ε̂σ(t)ndσ

+
1

2
Undσnd−σ] +

∑
α∈{L,R}

∑
kσ

(Tαka
†
α,kσdσ +H.C.),

(2)

where

ε̂σ(t) = Edσ + i∆d(ce
−iωt − c†eiωt).

In equation (2), a†α,kσ(aα,kσ) and d†σ(dσ) are the creation

(annihilation) operators of electron in the αth lead and
in the quantum dot respectively with momentum k and
spin σ. Eαkσ , and Edσ are single electron energy levels cor-
responding to the αth lead and the quantum dot. ndσ is
the number operator of electron in the dot. The intra-dot
Coulomb interaction is described by the strength U . The
effect of time-dependent QMF is contained in ε̂σ(t). The
coupling strength between the field and quantum dot is
given by ∆d. We assume that the coupling strength ∆d is
so small that there is no nonlinear turbulence behavior or
non-physical divergence arising from the perturbation.

We employ the Keldysh nonequilibrium Green func-
tion technique [22,27,28] to derive the current formula. In
the presence of the external oscillating perturbations, the
current is time-dependent, and it is different from point
to point due to the accumulation of electrons. The current
at a point is the differences between the flow of electrons
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from opposite directions. The charge operator in the αth

lead is ρα =
∑
kσ a

†
α,kσaα,kσ. According to the continuity

equation and Heisenberg equation, we have the operator
of current flowing into the quantum dot from the αth lead
[22]

Îα(t) = −
ie

~
∑
kσ

〈[H, a†α,kσ(t)aα,kσ(t)]〉, α ∈ {L,R}. (3)

The symbol 〈...〉 in above formula denotes the quantum
expectation over the electron state, and the ensemble av-
erage over the system. In order to find the observable cur-
rent, one still needs to find EV over a QMF state. The
Hamiltonian H in equation (3) is defined by equation (2).
Substitute the Hamiltonian into the current formula, one
can verify that the following formula shown in reference
[22] is still valid in our QMF perturbed system

Îα(t) =
2e

~
Re{

∑
kσ

Tαk〈〈dσ(t)a†α,kσ(t)〉〉<}, α ∈ {L,R},

(4)

where 〈〈dσ(t1)a†α,kσ(t2)〉〉< = i〈a†α,kσ(t2)dσ(t1)〉. However,
the current formula defines a quantum operator of cur-
rent in the QMF Fock space. Because the leads are de-
scribed by free electron grand ensemble, we can express
the Keldysh Green function by the Dyson equation. In
the Dyson equation, g<α,kσ(t1, t2) and gaα,kσ(t1, t2) are the
Keldysh and advanced Green functions of the αth lead.
The Fourier transformed versions of these Green func-
tions are expressed as g<α,kσ(ε) = 2πifα(ε)δ(ε−Eαkσ), and

g
r(a)
α,kσ(ε) = (ε − Eαkσ ± iη)−1. Ĝrdσ(t1, t2) and Ĝ<dσ(t1, t2)

are denoted as the retarded and Keldysh Green function
operators of the quantum dot. In the presence of time-
dependent perturbations, the time-translation invariance
of the Green function is broken. In our system, this sig-
nifies ĜXdσ(t1, t2) 6= ĜXdσ(t1 − t2). Substitute the Dyson
equation into current formula (4), one obtains the time-
dependent current operator expressed by the Green func-
tion operators of quantum dot and the Green functions of
two leads [22]

Îα(t) = −
2e

h

∑
σ

∫ t

−∞
dt′
∫

dε Im{e
i
~
ε(t−t′)Γα(ε)

× [Ĝ<dσ(t, t′) + fα(ε)Ĝrdσ(t, t′)]}, (5)

where Γα(ε) = 2π
∑
k | Tαk |

2 δ(ε−Eαkσ) is the linewidth.
The Green function operators of the quantum dot is de-
fined by Ĝrdσ(t, t′) = − i

~θ(t − t′)〈{dσ(t), d†σ(t′)}〉, and

Ĝ<dσ(t, t′) = i
~ 〈d
†
σ(t′)dσ(t)〉.

To proceed the calculations, we define an operator Q̂(t)
as

Q̂(t) = X̂1 cos(ωt) + X̂2 sin(ωt), (6)

where

X̂1 =
1

2
(c+ c†), X̂2 =

1

2i
(c− c†).

The operators X̂1, X̂2 and Q̂(t) satisfy the commu-

tation relations [X̂1, X̂2] = i/2, and [Q̂(t1), Q̂(t2)] =

− i
2 sin[ω(t1− t2)]. Obviously, the operator Q̂(t) is an Her-

mitian operator which satisfies Q̂(t)† = Q̂(t). Using the

commutation relations between the operators ˆQ(t1) and
ˆQ(t2), one can derive the relation

P̂ †(t2)P̂ (t1) = P̂ (t1)P̂ †(t2)ζ2(t1, t2), (7)

where

ζ(t, t′) = exp{
i

4
λ2 sin[ω(t1 − t2)]},

P̂ (t) = exp[iλQ̂(t)], λ =
2∆d

~ω
·

Similar to the scattering theory, we deal with the trans-
port problem by separating the system into three regions.
The central quantum dot acts as the scatterer of elec-
trons ejected from electron reservoirs. The electrons in-
teract with the local electrons in the quantum dot by
the coupling strength Tαk. All the Green functions in the
quantum dot should be calculated by solving the coupled
system in the presence of tunneling. Ĝ<dσ depends on the

occupation in the leads, and Ĝ
r(a)
dσ depends on the cen-

tral region occupation. Similar to the system perturbed
by CMF [29], we make the gauge transform for the oper-
ator dσ(t) in the second order quantized state vector in
Hilbert space for local electron as

dσ(t) = P̂ (t)d̃σ(t), (8)

where d̃σ(t) is a new annihilation operator of electron
in the quantum dot. By the transformation, the time-
dependent energy ε̂σ(t) changes to the time-independent

Edσ, but the interaction strength Tαk changes to TαkP̂ (t).
Therefore, the Hamiltonian (2) is transformed to the fol-
lowing form by making the gauge transformation

H̃ =
∑

α∈{L,R}

∑
kσ

Eαkσa
†
α,kσaα,kσ +

∑
σ

[Edσñdσ

+
1

2
Uñdσñd−σ] +

∑
α∈{L,R}

∑
kσ

{TαkP̂ (t)a†α,kσ d̃σ

+ T ∗αkP̂
†(t)d̃†σaα,kσ}, (9)

where ñdσ = d̃†σd̃σ. The Green function operators

ˆ̃
G
<

dσ(t1, t2) and ˆ̃
G
r(a)

dσ (t1, t2) are defined as follows

ˆ̃
G
<

dσ(t1, t2) =
i

~
〈d̃†σ(t2)d̃σ(t1)〉, (10)

ˆ̃G
r(a)

dσ (t1, t2) = ∓
i

~
θ(±t1 ∓ t2)〈{d̃σ(t1), d̃†σ(t2)}〉. (11)

The current operator Îα(t) now can be written in
the following form by making gauge transformation
and by using Dyson equation with the Hamiltonian given
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by equation (9) that

Îα(t) = −
2e

h
Im
∑
σ

∫ t

−∞
dt′
∫

dεΓα(ε)P̂ (t)P̂ †(t′)e
i
~
ε(t−t′)

× [ ˆ̃
G
<

dσ(t, t′) + fα(ε) ˆ̃
G
r

dσ(t, t′)]. (12)

The productor of two operators P̂ (ti) can be expressed by

the usual displacement operator D̂(α) as

P̂ (t1)P̂ †(t2) = D̂(α)ζ(t2, t1) (13)

where

D̂(α) = exp(αc† − α∗c),

α =
i

2
λ[exp(iωt1)− exp(iωt2)].

The EV of an operator Ô(t1, t2) over a certain QMF state
is defined by

〈Ô(t1, t2)〉 = Tr{ρ̂Ô(t1, t2)}, (14)

with the density matrix ρ̂ describing the QMF. The
Green functions G̃Xdσ(t, t′) are therefore given by EV of

the Green function operators ˆ̃
G
X

(t, t′) over special state,

i.e., G̃Xdσ(t, t′) = 〈 ˆ̃G
X

dσ(t, t′)〉,where X ∈ {r, a,<}.

The Keldysh Green function G̃<dσ can be calculated by
the formula given in reference [22], and by employing the
relations for the Bessel function of the first kind Jn(τ),
and the modified Bessel function of the first kind In(τ) as

exp(−iξ sin α) =
∞∑

n=−∞

Jn(ξ)exp(−inα),

exp(±iξ cos α) =
∞∑

n=−∞

(±i)nJn(ξ)exp(inα),

exp(ξ cosα) =
∞∑

n=−∞

In(ξ)exp(inα).

We evaluate the Keldysh Green functions by using

G̃<dσ(t, t′) =

∫ ∫
dt1dt2G̃

r
dσ(t, t1)Σ̃<(t1, t2)G̃adσ(t2, t

′),

(15)

and the retarded Green function G̃rdσ by the Dyson
equation

G̃rdσ(t, t′) = grdσ(t, t′)

+

∫ ∫
dt1dt2g

r
dσ(t, t1)Σ̃r(t1, t2)G̃rdσ(t2, t

′).

(16)

In the above equations, Σ̃< and Σ̃r are the Keldysh and
retarded self-energy of the central region with Hamilto-
nian defined by equation (9). For the noninteracting quan-
tum dot where U = 0, they are expressed as

Σ̃<(t1, t2)=
∑

α∈{L,R}

∑
k

|Tαk |
2 〈P̂ †(t1)P̂ (t2)〉g<α,kσ(t1, t2),

(17)

Σ̃r(t1, t2)=
∑

α∈{L,R}

∑
k

|Tαk |
2 〈P̂ †(t1)P̂ (t2)〉grα,kσ(t1, t2).

(18)

In the Dyson equation, grdσ is the retarded Green function
of the quantum dot without connected to the two leads
and in the absence of QMF. To elucidate the quantum ef-
fect of QMF in the mesoscopic system, we only consider
the situation for the intradot Coulomb interaction is not
important. So we set U = 0 for simplicity. We also fo-
cus on the wideband limit so that the Green functions are
expressed exactly. In particular, transport is often domi-
nated by states close to Fermi level, the wideband limit
is a good approximation [22]. In this limit, level shift of
the quantum dot is zero, and the linewidths are energy
independent constants Γα(ε) = Γα. Let ΓL + ΓR = Γ , the
retarded self-energy is reduced to

Σ̃r(t1, t2) = −
i

2
Γ 〈P̂ †(t1)P̂ (t2)〉δ(t1 − t2). (19)

By noticing P̂ †(t)P̂ (t) = 1, we see that equation (19) is
reduced to the simple form

Σ̃r(t1, t2) = −
i

2
Γδ(t1 − t2).

The Keldysh self-energy is given by

Σ̃<(t1, t2) = i

∫
dε

2π
Λ(ε)exp[−

i

~
ε(t1 − t2)]〈P̂ †(t1)P̂ (t2)〉,

(20)

where

Λ(ε) = ΓLfL(ε) + ΓRfR(ε).

Substitute the self-energy Σ̃r into equation (16) we find

that the retarded (advanced) Green function G̃
r(a)
dσ ap-

pears as the one in the absence of external QMF

G̃
r(a)
dσ (t, t′) = ∓

i

~
θ(±t∓ t′)exp[−

i

~
(Edσ ∓

i

2
Γ )(t− t′)].

(21)

In fact, at the wideband limit we have ˆ̃
G
r(a)

dσ (t, t′) =

G̃
r(a)
dσ (t, t′). Substitute the Green functions G̃rdσ, G̃

a
dσ and

the self-energy Σ̃< into equation (15), we can obtain the
Keldysh Green function of the quantum dot described by
the Hamiltonian (9) in a special QMF. We can find time-
evolving current tunneling into the quantum dot from the
αth lead by taking EV over certain QMF.
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3 Coherent state expectation

We investigate the quantum state EV of current operator
by using the CS light field in this section. This QMF state
can be produced experimentally. Although this field is
quantum electromagnetic field, it is not non-classical light
field but the classical light field in the sense of quantum
optics [30] due to the existence of positive definite nonsin-
gular Glauber-Sudarshan P representation of its density
operator. The CS is defined as the eigen state of the non-
Hermitian operator c, i.e., c |Z〉 = Z |Z〉. In the number

representation, it can be expressed as | Z〉 = D̂(Z) | 0〉.
Because the operator c is non-Hermitian, Z is a complex
quantity. We take it as Z = |Z|eiφ for convenience. For the

CS, we have the EV of the displacement operator D̂(α) as

〈z |D̂(α) | z〉 = exp(αz∗ − α∗z −
1

2
|α |2). (22)

For our system, α is given by equation (13) and the EV
of the displacement operator is

〈z |D̂(α) | z〉 = exp{iλ |z | [cos(ωt− φ)− cos(ωt′ − φ)]

−
λ2

4
[1− cos(t− t′)]}. (23)

The Keldysh Green function is evaluated in CS as

G̃<dσ(t, t′) = ie−τ
∫

dε

2π~
Λ(ε)

∑
nm`p

(−1)pi`+pe−i(`+p)φ

× Jn(τ)J`(λ |z |)Jp(λ |z |)Im(τ)Fnm`p(ε, t, t
′),

(24)

where

Fnm`p(ε, t, t
′) = exp{−

i

~
[ε+ (n+m)ω(t− t′)

− `ωt′ − pωt]}G̃rdσ[ε+ (n− p+m)~ω]

× G̃adσ[ε+ (n+ `+m)~ω],

and τ = λ2/4, G̃
r(a)
dσ (ε) = (ε−Edσ± iΓ/2)−1. The current

Iα(t) is given by taking EV of the current operator Îα(t)

over CS, i.e., Iα(t) = 〈Îα(t)〉. In order to find the cur-
rent, we have to calculate the EV of the tunneling current
operator. As λ � 1, we make the approximation in our
calculations to find the current in the αth lead

〈P̂ (t)P̂ †(t′)P̂ †(t1)P̂ (t′1)〉 ≈ 〈P̂ (t)P̂ †(t′)〉〈P̂ †(t1)P̂ (t′1)〉.
(25)

However, this approximation does not affect our evalua-
tions for finding the nonequilibrium Green functions. It
does not affect the net tunneling current transporting
through the quantum dot if we consider the symmetric
situation where ΓL = ΓR. It is not difficult to remove the
approximation, and find exact result on the current for-
mula. As λ � 1, and by making the approximation in

equation (25), we immediately arrive at current formula
in the αth lead

Iα(t) = −
2e

h
ΓαIm{η(t)

∑
σ

∫
dε
∑
nm`

(−1)`

× ei`(ωt−φ+π/2)J`(λ |z |)Jn(τ)Im(τ)

× [Rn`m(ε, t) + fα(ε)G̃rdσ(ε− (n+ `−m)~ω)]},
(26)

where

η(t) = exp[−τ + iλ |z | cos(ωt− φ)],

Rn`m(ε, t) =

i

2
e−τ

∑
n1m1`1`2

(−1)`2Λ[ε− (n1 + `1 +m1 + n+ `−m)~ω]

× ei(`1+`2)(ωt−φ+π/2)Jn1(τ)J`1(λ | z |)J`2(λ | z |)Im1(τ)

× G̃rdσ[ε− (`1 + `2 +n−m+ `)~ω]G̃adσ[ε− (n−m+ `)~ω].

The net tunneling current transporting through the quan-
tum dot is the sum of the currents transporting from the
two leads into the quantum dot, and the currents going
out of the quantum dot transporting into the two leads.
For the symmetric situation, the two parts of the currents
going out of the quantum dot are cancelled. Therefore, the
net current is given by I(t) = 1

2 [IL(t) − IR(t)]. We take
the chemical potential of the left lead µL as the energy
measurement reference, so that the measured energy of
the quantum dot is Ẽd = Ed − µL. The potential drop
between the two leads is defined by µL − µR = eV , where
V is the measured voltage between the source and drain.
At zero temperature the spin degenerate net tunneling
current is reduced to the analytical form

I(t) =
e

h
e−τΓ

∑
n`m

(−1)`J`(λ |z |)Jn(τ)Im(τ)

× {cos[λ |z | cos(ωt− π/2) + `ωt]K[(n+ `−m)~ω]

+ sin[λ |z | cos(ωt− π/2) + `ωt]M [(n+ `−m)~ω]},
(27)

K(ε) = tan−1[
eV + ε+ Ẽd

Γ/2
]− tan−1[

ε+ Ẽd

Γ/2
],

M(ε) =
1

2
ln{

(eV + ε+ Ẽd)2 + Γ 2/4

(ε+ Ẽd)2 + Γ 2/4
}.

Equation (27) is exact and there is not necessarily re-
stricted by λ� 1. For the symmetric situation, the terms
associated with the approximation chosen as equation (25)
are cancelled exactly. This equation is valid in the wide-
band limit.

The time-averaged current Iα is obtained by integrat-
ing the time-dependent current over a period T , i.e.,

Iα = 1
T

∫ T
0
Iα(t)dt. For arbitrary temperature, from
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Fig. 1. Current oscillation vs. ωt tunneling through the quan-
tum dot. The parameters are chosen as Γ = 0.4~ω, Ẽd =
1.5~ω, |Z| = 1, φ = π/2, eV = 0.8~ω, and (a) λ = 0.302 for
the dashed curve; (b) λ = 0.604 for the solid curve.

equation (26) we obtain the time-averaged current in the
αth lead for λ� 1 as

Iα = −
2e

h
e−τΓαIm

∑
σ

∫
dε
∑
`nm

J`(λ |z |)Jn(τ)Im(τ)

× {R̃`nm(ε) + J`(λ |z |)fα(ε)G̃rdσ[ε− (n+ `−m)~ω]},
(28)

where

R̃`nm(ε) =

i

2
e−τ

∑
qn1m1`1

(−1)`Λ[ε− (n1 + `1 +m1 + n+ `−m)~ω]

× Jn1(τ)Im1(τ)J`1(λ | z |)Jq(λ | z |)Jq+`+`1(λ | z |)

× G̃rdσ[ε− (n−m− q)~ω]G̃adσ[ε− (n+ `−m)~ω].

For the symmetric case, we obtain the time-averaged net
current transporting through the quantum dot at zero
temperature from equation (27) exactly

I =
e

h
e−τΓ

∑
n`m

J2
` (λ |z |)Jn(τ)Im(τ)K[(n + `−m)~ω].

(29)

Equations (27, 29) are the main results of this section
which contain all the information of transport. They are
exact in the symmetric tunneling system. The magnitude
of the tunneling current is modulated by the exponential
factor exp(−τ).

We perform numerical calculation on the transport
to show time-oscillating current and photon-assisted tun-
neling. As photon energy is much larger than thermal
noise energy, quantum effect is obvious. In the follow-
ing calculations we consider zero temperature transport
and spin degenerate situation. We take wideband limit in
the calculation, and deal with the symmetric case where

ΓL = ΓR = Γ/2. The two quantities, I0 = 2eΓ
h
, G0 = 2e2

h
,

Fig. 2. Time-averaged net current vs. eV transporting through
the quantum dot. The parameters are chosen as Γ =
0.2~ω, |Z| = 1, φ = π/2, and (a) Ẽd = 1.5~ω, λ = 0.604 for
the dashed curve a; (b) Ẽd = 1.5~ω+ 0.5eV , λ = 0.604 for the
solid curve b; (c) Ẽd = 1.5~ω, λ = 0.802 for the solid curve c.
eV is scaled by ~ω.

are defined as the measurement scale. All the energy quan-
tities are scaled by the photon energy ~ω.

We present the ac net tunneling current transporting
through the quantum dot in Figure 1. The current evolves
periodically with scaled time ωt. The configuration and
magnitude of current is determined by the resonant fea-
ture of intrinsic structure of quantum dot, and by the ex-
ternal QMF. The oscillations are different due to different
magnitudes of QMF. The solid curve is related to larger
coupling strength ∆d than that of the dashed one. There
are two kinds of tunneling oscillations for each of the net
current. The main oscillation is split into two oscillations
with the same period as that of the main oscillation. The
period of the oscillation is not the same one as the period
of QMF, but is a compound effect of electron resonance
and applied QMF. The magnitude of the ac current in-
creases with the strength of external QMF. We also see
that the shapes of the vibrations are different due to dif-
ferent λ.

Figures 2 and 3 show the I-V characteristics of net dc
tunneling current in different regions of bias voltage V . In
these figures, we consider the situations for the gate volt-
age Vg = −Ẽd/e is independent on the source-drain bias

V , and is dependent on the bias V as Ẽd = Ẽ
(0)
d + 1

2eV .
Figures 2a and c are associated with the cases where
the gate voltage is independent on source-drain bias, but
with different coupling strength of QMF. As the bias
0 < eV < 0.6~ω, there exists a peak in each of the curve.
As eV > 0.6~ω for curve a, and eV > 0.75~ω for curve c,
the tunneling dc current increases monotonically. The tun-
neling current is affected seriously by the external QMF.
As the coupling strength of the field ∆d increases, the dc
tunneling current may appear negative value. This phe-
nomenon can not be observed in macroscopic systems,
and it has not been reported for the system perturbed
by CMF. Figure 2b is corresponding to the case where
the gate voltage is dependent on the source-drain bias V .
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Fig. 3. Time-averaged net current vs. eV transporting through
the quantum dot. This figure shows I-V characteristics in the
negative voltage region. The parameters for solid curve are
taken as the same ones in Figure 2a, while the parameters for
dashed curve are the same as those in Figure 2b.

There exist a current peak as eV < 0.5~ω and small nega-
tive current value at the valley. The tunneling current in-
creases in the region 0.5~ω < eV < 1.4~ω, and then it de-
creases slowly and monotonically as eV > 1.4~ω. Figure 3
shows the dc tunneling current in the region eV < 0. The
solid curve represents the case where gate voltage is not
dependent on bias V , while the dashed curve represents
the situation where gate voltage is related to source-drain
bias by the relation Ẽd = 1.5~ω + 1

2eV . The tunneling
current increases in the negative direction as the bias V
increases negatively for the case where the gate voltage is
not related to V , and it reaches to a saturate value. The
tunneling current for the case where the gate voltage is
related to V appears negative resonance in this region. In
the diagrams, we see that there exist some current steps
caused by the external QMF. They represent the process
of photon-assisted tunneling. If the tunneling electrons ab-
sorb photons, they can jump to higher energy level. Thus
some electrons gain enough energy to join the transport.
This is a quantum effect, and it is well-known in CMF re-
sponsed systems. The steps become steep as ∆d is large.
The tunneling current is much larger in the negative re-
gion than the one in the positive region of V .

Figure 4 shows the structures of differential conduc-
tance versus the bias voltage V . The dashed curve corre-
sponds to the tunneling current with gate voltage being
independent on V , while the solid curve describes the cur-
rent with gate voltage being related to the bias V . The
diagrams exhibit resonant side peaks which are caused by
the external QMF, they display photon-assisted tunneling.
As the gate voltage is related to source-drain bias, the neg-
ative differential conductance versus V appears evidently.
The behaviors of the tunneling current exhibit quite differ-
ent feature on the mesoscopic transport for the two cases.

The time-averaged tunneling current versus gate volt-
age Vg is presented in Figure 5. There exist two shoulders
beside the main peak if QMF is weak, and the shoulders
become two side peaks as the coupling strength of QMF
∆d increases. This is similar to the situation with CMF

Fig. 4. The differential conductance dI/dV vs. eV . The pa-
rameters are chosen as Γ = 0.2~ω, |Z| = 1, φ = π/2, λ =
0.604 and (a) for the dashed curve Ẽd = 1.5~ω; (b) for the
solid curve Ẽd = 1.5~ω + 0.5eV . The differential conductance
is measured in the unit G0, and eV is scaled by ~ω.

Fig. 5. The time-averaged net current transporting through
the quantum dot vs. eVg. The parameters are chosen as Γ =
0.2~ω, |Z| = 1, φ = π/2, eV = 0.8~ω, and (a) for the dashed
curve λ = 0.604; (b) for the solid curve, λ = 0.802. eVg is
scaled by ~ω.

perturbed system. However, the resonant peaks exhibit fat
appearances. The small negative tunneling current is also
observed, and the negative current increases as the magni-
tude of QMF increases. Of course, the negative tunneling
current disappears if QMF is removed.

The differential conductance corresponding to gate
voltage Vg is shown in Figure 6. The negative conduc-
tance is seen obviously in several positions of eVg. We
observe that some peaks and valleys appear in addition
to the main peak and valley. The heights and depths of
the peaks and valleys are associated with the magnitude
of QMF, and they become larger as QMF is stronger. The
negative differential conductance is located in the regions
where the valleys are found. The side peaks and side val-
leys will disappear as the external QMF is removed. For
CMF applied system, the corresponding structures related
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Fig. 6. The differential conductance dI/dVg vs. eVg. The pa-
rameters are chosen as |z| = 1, φ = π/2, eV = 0.8~ω, Γ =
0.2~ω, and (a) for the solid curve λ = 0.604; (b) for the dashed
curve λ = 0.802. The differential conductance is measured in
the unit G0, and eVg is scaled by ~ω.

to Figures 5 and 6 are reported in the literature, such as in
reference [15] for considering two CMFs applying to the
source and drain, and to the gate. However, our results
reveal subtle quantum structures concerning CS.

4 The SU(1,1) coherent state expectation

We consider the EV over the SU(1,1) CS in this section.
The realization of SU(1,1) Lie algebra for a single mode
is K0 = (c†c + cc†)/4, K+ = c†2/2 and K− = c2/2. For
simplicity, we take EV over the squeezed number state
|β〉 = S(β) |m〉, where |m〉 is the usual number state, and
S(β) is the squeeze operator S(β) = exp(1

2β
∗c2 − 1

2βc
†2)

with β = |β|exp(−iφ). For the squeezed CS, the quan-
tum fluctuation is smaller than the corresponding com-
ponents of the CS. The photon number distributions for
these states are oscillatory with zero probability for odd
n (m = even) or for even n (m = odd) [31]. This state
is a kind of nonclassical light field exhibiting nonclassical
effect [30].

The following formulae are useful for our calculations

S†(β)cS(β) = cosh(|β|)c− exp(−iφ) sinh(|β|)c†, (30)

S†(β)D̂(α)S(β) = D̂(γ), (31)

where

γ = α cosh(|β |) + α∗e−iφ sinh(|β |).

The EV of the productor P̂ †(t1)P̂ (t2) for our system can
be derived as

〈β | P̂ †(t1)P̂ (t2) |β〉 = ζ(t2, t1)〈m |D̂[γ(t1, t2)] |m〉. (32)

The EV of the displacement over the usual number state
|m〉 is given by

〈m |D̂(γ) |m〉 = exp(−
1

2
|γ |2)Lm(|γ |2), (33)

where Lm(x) are the Laguerre polynomials defined by

Lm(x) =
m∑
n=0

(−1)n
m!

(n!)2(m− n)!
xn. (34)

Substitute the value α(t1, t2) = i
2λ(eiωt2 − eiωt1) into

γ(t, t′) in equation (31) we obtain

|γ(t1, t2) |2 = λ2 sin2[
1

2
ω(t1 − t2)]{cosh(2|β|)

+ sinh(2|β|) cos[ω(t1 + t2) + φ]}. (35)

Therefore, we can find the Keldysh Green function and
tunneling current by taking EV over SU(1,1) CS. In our
paper, we only consider the cases for SU(1,1) CS being
two lowest states where m = 0, 1. It is not difficult to
obtain the cases where m > 1.

4.1 EV over |β〉 = S(β) |0〉

We consider EV of current operator over squeezed vacuum
CS. As m = 0 the Laguerre polynomial L0(x) = 1, and
we have

〈β | P̂ †(t1)P̂ (t2) |β〉 = ζ(t2, t1)exp(−
1

2
|γ |2). (36)

The Keldysh Green function G̃<dσ(t, t′) is found as

G̃<dσ(t, t′) = ie−τ1
∫

dε

2π~
Λ(ε)

∑
n1`1`2`3`4

(−1)`3ei(`2+`3+`4)φ

× Jn1(τ)I`1(τ1)I`2(τ2/2)I`3(τ2)I`4(τ2/2)

×G[ε+ (n1 − `1 − 2`2 − `3)~ω, t]
×G∗[ε+ (n1 − `1 + `3 + 2`4)~ω, t′], (37)

where

G(ε, t) = e−
i
~
εtG̃rdσ(ε), τ =

λ2

4
,

τ1 = τ cosh(2 |β |), τ2 = τ sinh(2 |β |).

We take the approximation proposed in equation (25) to
estimate the current in the leads as λ� 1. As mentioned
in Section 3, this approximation does not affect the pre-
cision of net tunneling current for symmetric system. Fi-
nally, we arrive at the time-evolving current transporting
from the αth lead into the quantum dot

Iα(t) = −
2e

h
Γαe−τ1η1(t)Im

∑
σ

∫
dε
∑
n`mp

(−1)mJn(τ)

× I`(τ1)Im(τ2)Ip(τ2/2)ei(m+p)(2ωt+φ){Wn`mp(ε, t)

+ fα(ε)G̃rdσ[ε− (n− `+m+ 2p)~ω]}, (38)
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where

Wn`mp(ε, t) =
i

2
e−τ1

∑
n1,`1,..,`4

(−1)`3Jn1(τ)I`1(τ1)I`2(τ2/2)

× I`3(τ2)I`4(τ2/2)ei(`2+`3+`4)(2ωt+φ)

× Λ[ε− (n1 − `1 + `3 + 2`4 + n− `+m

+ 2p)~ω]G̃rdσ{ε− [2(`2 + `3 + `4 + p) + n

− `+m]~ω}G̃adσ[ε− (n− `+m+ 2p)~ω],

and

η1(t) = exp[
τ2

2
cos(2ωt+ φ)].

For the symmetric system where ΓL = ΓR, the net ac
tunneling current transporting through the quantum dot
at zero temperature is given by the following analytical
form

I(t) =
e

h
Γ e−τ1η1(t)

∑
n`mp

(−1)mJn(τ)I`(τ1)Im(τ2)Ip(τ2/2)

× {sin[(m+ p)(2ωt+ φ)]M [(n− `+m+ 2p)~ω]

+ cos[(m+ p)(2ωt+ φ)]K[(n− `+m+ 2p)~ω]},
(39)

where K(ε) and M(ε) are defined by equation (27).
The time-averaged net tunneling current for the sym-

metric case is given by

I =
e

h
Γ e−τ1

∑
n`mp

(−1)mJn(τ)I`(τ1)Im(τ2)Ip(τ2/2)

× Im+p(τ2/2)K[(n− `+m+ 2p)~ω]. (40)

Equations (39, 40) are two main results of this subsection.
They are exact in the wideband limit, and they do not
have the restriction as λ� 1. The ac tunneling current is
modulated periodically with the envelope function η1(t).
The magnitude of the current is also modulated by the
factor exp(−τ1).

We present ac net tunneling current transporting
through the quantum dot in Figure 7. The periodic oscil-
lation of ac current is quite different from the oscillation
shown in Figure 1. There are more oscillation peaks in this
figure than in Figure 1. This means that the period in this
figure is smaller than that of Figure 1. Between two larger
peaks there exists one small peak. The magnitudes of the
peaks are strongly dependent on the magnitude of QMF.
The heights of these peaks increase as λ increases. Neg-
ative tunneling current may appear if the external QMF
is strong enough. The solid curve represents the positive
ac tunneling, while the dashed curve shows that negative
tunneling appears periodically. Between two large peaks
there exists one small peak.

We plot dc tunneling current versus gate voltage Vg

in Figure 8. The resonant dc tunneling current structure
is different from the one shown in Figure 5. In the pres-
ence of QMF, the slopes are modified to form steps. The
steps become steeper and the main peak becomes lower as

Fig. 7. The net tunneling current oscillation vs. ωt. The pa-
rameters are chosen as Γ = 0.4~ω, |β| = 1, φ = π/3, eV =
0.8~ω, Ẽd = 2.5~ω, and (a) λ = 0.302 for the solid curve; (b)
λ = 0.604 for the dashed curve.

Fig. 8. The time-averaged net tunneling current vs. eVg. The
parameters are chosen as Γ = 0.4~ω, |β| = 1, eV = 0.8~ω,
and (a) λ = 0.604 for the solid curve; (b) λ = 0.802 for the
dashed curve. eVg is scaled by ~ω.

the applied QMF becomes stronger. There is no negative
current in the net dc tunneling.

Figure 9 shows the differential conductance of tunnel-
ing current versus gate voltage Vg. The negative conduc-
tance appears obviously due to the tunneling electrons
resonating with quantum dot and with external QMF.
The small peaks and valleys signify photon-assisted tun-
neling, while the main peak and valley are caused by the
resonance of tunneling electron and local electron in the
quantum dot. The small peaks and valleys become larger
as QMF increases further, but the height and depth of the
main peak and valley decrease. Comparing this figure with
Figure 6, we see that they have similar structure. But in
this figure, the base lines on which small resonant peaks
located become bent.
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Fig. 9. The differential conductance dI/dVg vs. eVg. The pa-
rameters are chosen as |β| = 1, Γ = 0.2~ω, eV = 0.8~ω, and
(a) λ = 0.302 for the solid curve; (b) λ = 0.802 for the dashed
curve. The differential conductance is measured in unit G0,
and eVg is scaled by ~ω.

4.2 EV over |β〉 = S(β) |1〉

We consider the lowest non-vacuum squeezed CS for the
QMF applied system in this subsection. As m=1, we have
the Laguerre polynomial L1(|γ |2) = 1− |γ |2. We consider
the symmetric case where ΓL = ΓR. For this case, the
time-averaged net tunneling current at zero temperature
is expressed as the exact form

I =
e

h
Γ e−τ1

∑
n`mp

(−1)mJn(τ)I`(τ1)Im(τ2)Ip(τ2/2)

× {χ(1)
mpK[(n− `+m+ 2p+ 1)~ω]

+ χ(2)
mpK[(n− `+m+ 2p− 1)~ω]

+ χmpK[(n− `+m+ 2p)~ω]}, (41)

where

χmp = (1− 2τ1)Im+p(τ2/2) +
τ2

2
[Im+p+1(τ2/2)

+ Im+p−1(τ2/2)],

χ(1)
mp = τ1Im+p(τ2/2)− τ2Im+p+1(τ2/2),

χ(2)
mp = τ1Im+p(τ2/2)− τ2Im+p−1(τ2/2).

The current contains three major terms, each of which
involves a main resonant peak but with different height.
The magnitude of it is modulated by the factor exp(−τ1).

The time-averaged net tunneling current versus gate
voltage is drawn in Figure 10. The solid curve and dashed
curve correspond to the situations where λ = 0.604 and
λ = 0.802, respectively. Comparing the diagrams with the
case shown in Figue 8, we observe that the single reso-
nant peak of current in the S(β) | 0〉 state is split into
three resonant peaks in the S(β) | 1〉 state. The magni-
tudes of the three resonant peaks are strongly dependent
on QMF. As the external QMF is strong enough, negative

Fig. 10. The time-averaged net tunneling current vs. eVg. The
parameters are chosen as Γ = 0.2~ω, |β| = 1, eV = 0.8~ω,
and (a) λ = 0.604 for the solid curve; (b) λ = 0.802 for the
dashed curve. eVg is scaled by ~ω.

Fig. 11. The differential conductance dI/dVg vs. eVg. The
parameters are chosen as |β| = 1, Γ = 0.2~ω, eV = 0.8~ω,
and (a) λ = 0.802 for the dashed curve; (b) λ = 0.604 for the
solid curve. The differential conductance is measured in unit
G0, and eVg is scaled by ~ω.

current may emerge. The absolute heights of peaks in-
crease with the magnitude of QMF increases. The central
peak grows more rapidly than the side peaks. The base of
the tunneling current shifts down, and the shoulders rise as
the magnitude of QMF increases. The current is negative
when the bias eVg < −2.5~ω, or eVg > 2.8~ω shown in the
dashed curve. Compared with the situation in Figure 8,
one can explain the fact as that the quantum state present
more channels for electrons to transport. This is equiva-
lent to the circumstance that many electrons transport
through the quantum dot simultaneously and coherently.
Each electron resonates in a channel.

Figure 11 represents the resonant behaviors of differ-
ential conductance versus gate voltage. Comparing with
the diagrams in Figure 9, we see that three main peaks
and valleys emerge in the central region. Each of the main
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peaks is associated with one of the main peaks presented
in Figure 10. The diagram of the differential conductance
shifts down, and the magnitudes of peaks and valleys in-
crease as the strength of QMF increases. The negative dif-
ferential conductance do not occur as QMF is weak, but
it takes place as QMF is strong enough. The small peaks
and valleys correspond to the shoulders in Figure 10.

5 Concluding remarks

We have examined the tunneling current through a quan-
tum dot perturbed by a QMF. The time-dependent and
time-averaged tunneling current formulae are obtained
analytically. The differential conductances dI/dV and
dI/dVg are studied at zero temperature. The special cases
are discussed by considering wideband limit and symmet-
ric interaction between the quantum dot and the two
leads. The main analytical current formulae are equa-
tions (27, 29) related to CS, and equations (39, 40, 41)
related to SU(1,1) CS. The photon-assisted tunneling and
resonant behaviors are observed in the QMF applied sys-
tem. Negative differential conductance is also exhibited.
Some of the similar phenomena are already known in CMF
applied systems. However, in the QMF applied system,
the tunneling current formulae and the differential con-
ductance formulae are much complicated because of the
quantum fluctuation. So that new effects are hidden in the
formulae. The quantum signal applying to the quantum
devices may transfer information to the tunneling current,
and all the measurable quantities fluctuate around their
mean values. This induces quantum noise in the system.
The coherent phases are modified by the quantum field.
Therefore, the transport behaviors appear compound ef-
fect due to the resonant tunneling and quantum environ-
ment. We have investigated the CS and SU(1,1) CS QMFs
perturbed systems. These two field states are well-known
in quantum optics, while they have not been employed
in quantum dot system before. The current is related to
the applied QMF sensitively. It appears different behav-
iors for different QMF. For the system concerned with
CS and squeezed vacuum state, the dc tunneling behav-
iors are somewhat similar to the system applied by CMF.
However, for the system related to other squeezed CS,
the tunneling current appears quite new effect. The main
resonant peak splits to form multi-resonant state. This
provides more resonant channels for electrons to tunnel.
The magnitude of the current is modulated by QMF in
the exponential form, and the modulation is intimately
related to the quantum state. In this paper, we only con-
sider symmetric tunneling, and have obtained photon-
assisted transport. As the source-drain bias is zero, there
is no tunneling current. For this symmetric interaction
system, there is no photon-electron pump effect. This is
because the pumped electrons can tunnel to both leads
equivalently. As the restriction ΓL = ΓR is removed, we
can find the photon-electron pump effect. Dynamic be-
haviors of the tunneling current exhibits quite different
time-evolution structure for different QMF state. As the
coupling strength ∆d is zero, the current formulae reduce

to Landauer-Büttiker formula with resonant Breit-Wigner
single energy form.

Quantum dot is an ideal model of the quantum de-
vice with very small sizes in three dimensions. Electrons
tunneling through the device are coherent and correlated
with the external perturbation. The quantum device re-
sponds sensitively to the quantum nature of different ex-
ternal QMF. There is no classical correspondence for the
fully quantum theory, because our system is quite differ-
ent from the classical version where CMFs are imposed
on quantum devices. As the devices are applied with light
signals, the fluctuations of magnitudes and phases of the
light signals can result in uncertainty during the measure-
ments. The fluctuations are mainly caused by quantum
fluctuation of field nature.

One of the authors (H.K. Zhao) wishes to thank M. Wag-
ner, B. Kramer, C. Bruder, and M. Stopa for communica-
tions. This work was supported by RGC of SAR Government
of Hong Kong under Grant No. HKU 7112/97P, and by the
National Natural Science Foundation of China under Grant
No. 19875004.
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B 56, 13026 (1997).

5. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70,
2601 (1993); C.W.J. Beenakker, B. Rejaei, J.A. Melsen,
Phys. Rev. Lett. 72, 2470 (1994); A. Schiller, S. Hershfield,
Phys. Rev. B 51, 12896 (1995).

6. F. Zhou, B. Spivak, N. Taniguchi, B.L. Altshuler, Phys.
Rev. Lett. 77, 1958 (1996); O. Agam, N.S. Wingreen, B.L.
Altshuler, D.C. Ralph, M. Tinkham, Phys. Rev. Lett. 79,
1956 (1997).

7. J. Yi, M.Y. Choi, K. Park, E.H. Lee, Phys. Rev. Lett. 78,
3528 (1997); Y. Naveh, D.V. Averin, K.K. Likharev, Phys.
Rev. Lett. 79, 3482 (1997); R. Fazio, R. Raimondi, Phys.
Rev. Lett. 80, 2913 (1998).

8. H.K. Zhao, J. Phys. A 29, 5827 (1996); H.K. Zhao, Com-
mun. Theor. Phys. 29, 33 (1998); J. Wang, Q.R. Zheng,
H. Guo, Phys. Rev. B 55, 9770 (1997); Z.S. Ma, J. Wang,
H. Guo, Phys. Rev. B 57, 9108 (1998).

9. F.W.J. Hekking, L.I. Glazman, K.A. Matveev, R.I
Shekhter, Phys. Rev. Lett. 70, 4138, (1993).

10. J.A. Folk et al., Phys. Rev. Lett. 76, 1699 (1996); S.M.
Cronenwett et al., Phys. Rev. Lett. 79, 2312 (1997).

11. C. Bruder, H. Schoeller, Phys. Rev. Lett. 72, 1076 (1994);
Ph. Brune, C. Bruder, H. Schoeller, Phys. Rev. B 56, 4730
(1997).



524 The European Physical Journal B

12. P.F. Bagwell, R.K. Lake, Phys. Rev. B 46, 15329 (1992);
A. Schiller, S. Hershfield, Phys. Rev. Lett. 77, 1821 (1996).

13. L.P. Kouwenhoven et al., Phys. Rev. Lett. 73, 3443 (1994);
T.H. Oosterkamp et al., Phys. Rev. Lett. 78, 1536 (1997).

14. M. Wagner, Phys. Rev. A, 51, 798 (1995); M. Wagner,
Phys. Rev. Lett. 76, 4010 (1996).

15. T.H. Stoof, Yu.V. Nazarov, Phys. Rev. B 53, 1050 (1996);
Q.F. Sun, T.H. Lin, Phys. Rev. B 56, 3591 (1997).

16. H.K. Zhao, Z. Phys. B 102, 415 (1997); H.K. Zhao, Phys.
Lett. A 226, 105 (1997); H.K. Zhao, G.v. Gehlen, Phys.
Rev. B 58, 13660 (1998).

17. B.J. Keay et al., Phys. Rev. Lett. 75, 4102 (1995); G.
Platero, R. Aguado, Appl. Phys. Lett. 70, 3546 (1997).
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